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SUMMARY. The problem of selecting the population associated with the largest mean 

from k normal populations which have a common known variance is considered. A class of 

L-stage selection procedures, which have the desirable property that they screen out the non 

contending populations as the sampling proceeds from one stage to the next, is proposed. The 

proposed procedures are adaptive, capitalizing on favorable configurations of population means, 

and have the added advantage that they terminate in at most L stages (where L is typically 

small, two to five). Tables of "optimal" design constants required to implement the procedures 

are provided as are the performance assessments based on Monte Carlo simulations for the 

procedures using these design constants. The proposed procedures are compared with some 

existing procedures and it is found that the former offer considerable improvement over the latter 

in large number of situations. 

1. Introduction 

In this paper we propose a class of L-stage procedures ?Pt) for selecting 
the normal population with the largest mean (referred to as the "best" 

population) when the populations have a common known variance. The 

procedure 7?l screens out the noncontending populations as the sampling 

proceeds from one stage to the next and employs Gupta's (1956, 1965) screen 

ing type subset selection approach in the first (L-Y) stages and Bechhofer's 

(1954) indifference-zone approach to all populations retained in the final 

stage. This procedure is a generalization of the two-stage procedure 7?2 

proposed in Bechhofer and Tamhane (1977) (see also Alam, 1970). The 

practical considerations which prompted the development of multistage 

screening type selection procedures are explained in Bechhofer and Tamhane 

(op. cit.). 

This same approach is applicable to many other selection problems, 

e.g. normal variances problem. Also by using appropriate transformations 

to normality, the tables given in this paper can be applied as approximations 

in these other selection problems. Now we give the mathematical formulation 

of the selection problem and some notation. 
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198 AJIT C. TAMHANE 

Let Xiv (v = 1, 2, ...) denote i.i.d observations from population Ilf which 

is normal with unknown mean m (1 ̂  i ^ k) and known variance or2. Let 

/%] ^ <? ftm denote the ordered values of the ?n and let 8y 
= 

/?[{] 
? 

/?[j] 

(1 ̂ i>3 K &) 1^ *s no^ known which population is associated with 

?i[i\ (1 < i < k). Experimenter's goal is to select the population associated 

with /i[jc] (if two or more populations tie for the largest mean then select any 
one of those populations), termed the best population. Such a selection is 

referred to as a correct selection (CS). 

According to the indifference-zone approach (Bechhofer, 1954) to this 

selection problem, it is assumed that the experimenter can preassign two 

constants 8* > 0 and P* (Ijk < P* < I). He wants a procedure /> which 

guarantees the probability requirement 

P?CS\*>) 
> P* whenever 8kt *_x > 8*, ... (1.1) 

where the subscript fji 
= 

(/?l5 ..., /??) denotes that the probability is computed 

under the parameter configuration p,. 

The parameter space of the possible jji's is denoted by ?2 and the preference 
zone for a OS by ?1(8*) 

== 
{/i e ?|#*f ?_x > 5*}. The associated indifference 

zone is the complement of Q(?*) in ?2. To solve the mathematical problem 

of guaranteeing (1.1) for a specified 7? it is necessary to find a jjl0 e ?1(8*) where 

the infimum of P (CS\/>) over 0,(8*) occurs; such a (jt0 is referred as a least 

favourable configuration (LFC) for IP. 

A brief summary of the paper is as follows : In Section 2 we propose 

a ?-stage procedure PL and derive an expression for its exact PCS when 

k = 2 and lower bounds on the PCS for k > 2. Section 3 gives the various 

restrictions imposed on the design constants of 1PL to facilitate their evalua 

tion. Section 4 describes a method for determining the "optimal" design 

constants of J3L by minimizing the expected total sample size at some selected 

(jl; the estimates of the expected total sample size are obtained by Monte 

Carlo simulations. Finally Section 5 gives some performance comparisons. 

2. ? ?-STAGE PROCEDURE f>L AND ITS PCS 

2.1. A L-stage procedure ?Pl> We propose a ?-stage (L ^ 2) procedure 

J0L 
= 7>l (Nx, ..., Nl; hx, ...,hh) which depends on positive integers 

iVt < ... < Nl and real constants hi > 0 (1 < ? ̂  ?) with hL == 0; these 

are referred to as the design constants of 7?^. The integer n\ = 
Ni?Ni_x 
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MULTISTAGE SELECTION PROCEDURES 199 

(where N0 
? 

0) denotes the common number of observations to be taken at 

the Z-th stage (1 < I < L) from each population still retained for sampling 
at that stage and hi is the "yardstick" used in determining the subset of the 

populations to be retained in the (Z+l)st stage (1 < I < L?l), the sampling 

being terminated at the L-th stage. The design constants of pL are to be 

determined so that (1.1) is guaranteed. Now we describe Pl. 

At the 1st stage take a random sample of size nA = 
N? from each EU for 

iel1 
= 

{1, 2, ..., k) and compute the k sample means X{V = 2 
XiJN1 

(1 ̂  i < k). Determine the subset {11$, iel2) to be retained for sampling 

in the second stage where I2 
= 

{iel^XW > max^e/ Xf>?hx}. If only a 

single population is retained then stop sampling and assert that, that popula 
tion is best. Otherwise proceed to the second stage. In general, at the 

Z-th stage (1 < I < L?l), take a random sample of size m = 
Ni?Ni^ from 

each 11$ for ieli (i.e., the set of populations retained for sampling at the i-th 

*i 
stage) and compute the cumulative sample means XW = S Xn,/Ni. Deter 

g? 

mine the subset {11$, i e J/+1} of populations to be retained for sampling in 

the (i-fl)st stage where Ii+1 
= 

{i eIi\X? > max^e/ZiZ)?hi). 
If only a 

single population is retained then stop sampling and assert that, that popula 
tion is best. Otherwise proceed to the (Z+l)st stage. At the L-th stage, 
take a random sample of size n& = 

N^?Nl^ from each 11$ for i e Il,-i and 

NL 
compute the cumulative sample means XW = 2 Xiv?NL. Terminate 

sampling and assert that the population associated with max.c/ X{L) is best. 

Note that only the case L > 2 is of concern to us here because for L = 2 

the minimax design constants (without placing any restrictions on them as 

we do for L > 2 in the present paper) are given in Tamhane and Bechhofer 

(1979). 

2.2. Exact PCS fork=2 and lower bounds on the PCS for k > 2. An 

exact general expression for the PCS of 7?l for arbitrary k and L is difficult 

to derive. For L = 2 and arbitrary k an exact expression for the PCS has 

been derived in Tamhane and Bechhofer (1977). However, the LFC asso 

ciated with this exact PCS has been determined only for k = 2. Even if 

the LFC can be determined for k > 2, the problem of numerical evaluation 

of the exact PCS on a computer appears to be very formidable. 
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200 A JIT C. TAMHAN? 

For k = 2 and arbitrary L, an exact expression for the PCS of Pl can 

be derived as follows : Let POSj denote the probability that a correct 

selection is made at the Z-th stage (1 < I ̂  ?). Let 
X$ 

denote the cumula 

tive sample mean up to the l-th stage which is associated with /?[<] and let 

X$ be the corresponding sample mean based on the observations taken 

in the l-th stage only (1 < I ̂  ?; i = 1, 2). Further let 8 = 
/?[2]?/%] and 

Pii - w</tfj (1 < i < j, 1 < j < ?). Then 

where 

and 

^(081^)= S PCS* 

PCSi 
= O 

-^J 2 

(2.1) 

(2.2) 

= PU 

< 

PCS? - PyJXfo > Xft+h ; -A, < Xg)-X<f, < ?, (1 < j < Z-l)} 

1 f (S?hi) ?N, 
'-i ,_ . , ? ,, w 

^J>?z 

11 '-' 

.. (2.3) 

for 2 < Z < L. In (2.3) $( ) and ?5(-) denote the standard normal c.d.f and 

the corresponding p.d.f respectively and the lower and upper limits for the 

j-th (1 < j < M) integral are 

)-i -\ \ a-h)) IN, V ,? , 

and 

\Pjj 

\(S+hj) IN) ?1 ,? \ 

respectively. 
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MULTISTAGE SELECTION PROCEDURES 201 

By writing 

P^(CS|^l) 
= 

Pji{n(3) gets eliminated} 

1= PdX?i)-*(<$) < -**** sonie *(1<l< L)) 

where n(1) is the population with mean ?i^, it is easy to see that 
Pji(CS| J^l) 

is an increasing function of 8 
? 

fi[2)?fHi] f?r k = 2. Therefore the LFC 
is given by S --= S* for k -= 2. 

The case k = 2 is not of much practical interest (because there is no 

screening involved), but we can use the results for this case to give us some 
idea about how much we lose by using a lower bound on the PCS to be pro 

posed in the theorem below for arbitrary k and L. For both the bounds pro 

posed in the theorem, namely (2.4) and (2.5), it can be shown that the LFC 
is the usual slippage configuration; s^e the corollary. However, only the 
infimum of the less sharp bound given by (2.5) is computable in practice. 

We have given the sharper bound here with the hope that computations with 
it will become feasible in future. The proof of the theorem is omitted because 
it is a straightforward extension of Theorem 3.1 in Tamhane and Bechhofer 

(1979). 

Theorem : For any \Leil we have the following inequalities : 

-00 -*> ??1 L (T 

(?ki+hL)VNL 
_Xl\Rl 

1 
x0Lfa Xl|flj)(fai dxL (24) (T _ J 

> n 
11 

n1* [*+0n?*^ ] mx) I ... (2.5) 

where <D?(., .., -\Rl) denotes the c.d.f. and c6?(., ..., . 
|?l) the corresponding 

p.d.f. of a L-variate random vector whose components are standard normal and 

whose correlation matrix is Rl ? 
{rim} where 

rim = rml = 
V??^ d<l<m<L). ... (2.6) 

B 3 4-10 
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202 AJIT O. TAMHANE 

Corollary : The infimum with respect to fx, of (2.4) and;(2.5) ?vW ?1(8*) 
is attained at the configuration /i^ 

? 
/ft*_ij 

. = 
/tytj?$.*. (LFC) and thus for all 

y. e ?1(8*) we have that 

1 
iy w> f.Tf^iJ^hjVNl-s,. ?? ? ? i cr 

^^V^l -afcJAij-x^?fo, 
.... ̂ IBl)^! ... &fc - ?2.7) 

^s"!!^^^^^]^^}' 
' i2'8) 

Henceforth we shall use only the bound (2.8) and derive a conservative 

procedure by equating it to P*. Note that the discrepancy between (2.7) 
and (2.8) will increase as ? increases but for values of L of concern in this 

paper (namely three to five) the discrepancy is not substantial. 

2.3. Comparison of the exact PCS and the lower bound for k = 2. For 

reasons mentioned in Section 2.2 we shall compute the values of the; exact 

PCS for k = 2 given by (2.1) (at 8 = 8*) and the lower bound on it given hy 
(2.8) for some selected values of design constants. Although tho exact PCS 

can not be computed diroctlyfor Jfc > 2, it can be estimated by Monte Carlo 

simulations and these estimates can bo used to assess tho conservativism of 

the bound; this is done in.Section 5. 

For the numerical comparison between the exact PCS and the lower 

bound the design constants of PL were selected as follows : We set 

V+hjVT, = = (S'+HW?j = b (say)) 

(the above choice is employed lator in Section 3) and nx 
= ... = n? = n (say) 

which need not be an integer. Equating (2.S) to P* we find that 

6= ViO-^P*)1^]. 
Thus we obtain 

.ll??M?&.= Q-i[(P^i/S] (l < ?< L) ... (2.9) c V 2 
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MULTISTAGE SEI?CTI0N PROCEDURES 203 

and 

^=^Vt 
= 

<?>~W*)llLl{2 y?-l} 
(1</<L). ... (2.10) 

Using (2.9) and (2.10) the values of the exact PCS (given by (2.1)) were com 

puted for L = 3 and 5 and for selected values of P*; the results are displayed 

in Tablo 1. Note that L = 3 requires evaluation of double integrals while 

L = 5 requires evaluation of quadruple integrals over general regions. These 

integrations were performed using tho NIMBAS routine involving repeated 

applications of Simpson's rule developed by the Academic Computing Center 

at the University of Wisconsin, Madison. 

TABLE I. COMPARISON OF THE EXACT PCS AND P* 

GUARANTEED BY THE LOWER BOUND (2.8) 
FOR fc = 2 

exact PCS at 
pm 

? 
/e. 

. = 5* 

p*-_. 

0.75 0.8534 0.8703 

0.80 0.8802 0.8948 

0.85 0.9076 0,9180 

0.90 0.9361 0.9470 

0.95 0.9661 0.9705 

0.99 0.9924 0.9939 

These computations show that the bound is quito conservative for low 

values of P* but for P* ^ 0*90 (which are the values often employed in 

practice) the bound is not very conservative. As L increases from three 

to five, thero is a slight incroaso in the conservativism of the bound as is to 

be expected. The Monte Carlo simulations for PL reported in Section 4 

and 5 are carried out for P* 
? 

0-90 and 0-99 and thns their results should 

be credible. 

3. Some restrictions on the choice of design constants of P$ 

Let us reparameterize the original design constants to new ones as 

follows : 

cj=?Y?', 4= ?^?- (1<Z<L). 

Wo shall regard {(c/, di), 1 < I < L] as nonnogativo continuous variables for 

convenience. For determination of {(ci, di)} 1 < I < L} one d?n use m 
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204 AJIT C. TAMHANE 

appropriate criterion, viz., minimization of the expected total sample size 

at the LFC subject to the constraint (obtained from (2.8)) : 

n { J Q*-l(z+ci+di)dto(z) ) > P\ ... (3.1) 
1=1 l-ce J 

The resulting optimization problem will, however, be quite intractable because 

of the number of variables involved. 

To simplify the optimization problem we shall reduce its dimensionality 

by making the choice 

ci+^i 
= 

c2+d2 
= ... = 

cL+dL 
= 

cL 
= 

6(say) 
... (3.2) 

where, for given k and P*, b solves the equation 

J Q*~l(x+b)d<I>(x) 
.-= 

(Pyi*. ... (3.3) 

We shall perform optimization within the restricted class of ?P? defined by 

(3.2). Indeed, this leads to a suboptimal solution, but, as is found later in 

the Monte Carlo study, even this solution provides a significant improvement 
and it has the obvious advantage of less computation and tabulation. 

For k = 3, 4, 5, 7, 10 (5) 25, L =-- 3, 4, 5 and P* = 0*75, 0-90, 0-95 and 

0'99, the values of 6 calculated from (3.3) are given in Table 2. One can 

also use tables in Gupta (1963) or Milton (1963) to obtain the 6-values in an 

approximate fashion. The values of (c?, d{) for 1 < I < L are given by 

cL 
= b. ci 

-- = 
rlL cL, di 

= 
(l-rlL)b 

... 
(3.4) 

and the values of (Ni, hi) for 1 < / < L are given by 

NL - 
[{bcrlfi*)*l Ni = 

[(rlL hr/*')2], hi = 
P(l-rlL)?rlL 

... (3.5) 

where [x] denotes the smallest integer > x. 

The experimenter can use tabulated values of 6 in conjunction with any 
choice of sample size ratios to obtain (Ni, hi) from (3.5) which would guarantee 

(1.1). We consider a special family of sample size ratios, namely that the 

sample sizes in successive stages are in constant proportion, i.e. ni ? 
al~ln? 

fl < I < L) for some a > 0. Thus rlL 
= 

f(i_a*)/(l-aL)}* for a ^ 1 and 

rt? == 
VlJjTfov 

a = 1. 
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TABLE 2. DESIGN CONSTANTS b 

P* 
Je L- - 

0.75 0.90 0.95 0.99 

3 2.2966 2.9401 3.3432 4.1346 

3 4 2.4924 3.1059 3.4936 4.2608 
5 2.6375 3.2302 3.6070 4.3568 

3 2.5158 3.1392 3.5305 4.3007 
4 4 2.7054 3.3001 3.6767 4.4237 

5 2.8458 3.4208 3.7869 4.5173 

3 2.6627 3.2739 3.6578 4.4146 

5 4 2.8484 3.4317 3.8014 4.5357 

5 2.9862 3.5502 3.9097 4.6278 

3 2.8586 3.4551 3.8303 4.5704 
7 4 3.0399 3.6093 3.9706 4.6889 

5 3.1743 3.7250 4.0764 4.7791 

3 3.0430 3.6273 3.9949 4.7205 
10 4 3.2206 3.7784 4.1324 4.8368 

5 3.3522 3.8917 4.2361 4.9253 

3 3.2324 3.8055 4.1662 4.8779 

15 4 3.4065 3.9537 4.3010 4.9923 
5 3.5357 4.0649 4.4028 5.0791 

3 3.3569 3.9235 4.2797 4.9836 

20 4 3.5291 4.0700 4.4132 5.0965 
5 3.6567 4.1799 4.5138 5.1824 

3 3.4490 4.0111 4.3646 5.0623 

25 4 3.6198 4.1563 4.4968 5.1745 
5 S.7464 4.2654 4.5966 5.2597 

This special choice of sample size ratios appears to be reasonable; further 

more, it enables us to seek for an "optimal" (with respect to an appropriate 

criterion) choice of these ratios by manipulating a single quantity a. It 

might be noted that within this further restricted class, for given k and P*, 

Pl depends only on a\ we denote the corresponding PL by Pi (a). 

4. Determination of optimal constants a* 

4.1. Expected number of stages and expected sample size for Pl. Let M 

and N denote, respectively, the number of stages to termination and the 

total sample size required by Pl- Let E^(M\Pl) and 
E^(N\Pl) 

denote 

the corresponding expected values evaluated at jx. These two quantities are 

later used in assessing the performance of PL. 
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206 AJIT 0. TAMHANE 

Although it is possible to derive exact expressions for E^(M \Pl) and 

Ep(N I Pl), they are too cumborsomo to be of much computational or analytical 
use. Therefore we have used the Monto Carlo estimates of theso quantities 
in the performance assessment of Pl> Exact expressions of these quantities 
are derived in Tamhane (1978) for some special casos (? 

= 2, k > 2 and 

L > 2, k = 2). 

4.2. Monte Carlo results and a table of optimal constants a*. To determine 

the 
' 
optimal" values of a, we have considered two criteria : (i) minimize E(N) 

at the configuration /?tl] 
= 

/i[jc\ called tho equal means configuration (EMC); 

(ii) minimize E(N) at the configuration /%] 
= 

/*[*_!] =/i[k] 
? ** called the 

Although E(M) is not considered in those optimization criteria, it is taken 

into account later in tho overall performance assessment of Pl made in 

Section 5. 

The optimal values ^*((^Emc minimizes EemcW I ??? and a*LFC 

minimizes Elfc(N | Pl) were found by a search method which used the esti 

mates of E(N\Pl) at the respectivo configurations obtained from Monte 

Carlo experiments. For specified values of 8*, P*, k and a2, the search was 

conducted by varying the value of a in the appropriate direction in stoos 

of 0-1. Because of budget limitations, we have found the a*-values only for 

k = 5, 10, 25; ? = 3, 5 and P* = 0-90 and 0-99. These values are given 
in Table 3. It should be noted that the variation in a*-values is very small 

and hence, interpolation can be used for P* = 0*95 and the other 

(k, ?)-combinations. 

For each (k, L, P*)-combination T Monte Carlo experiments were 

conducted where T = 1000 or 500 as given in Tables 4 and 5. Throughout 

8* and er* were fixed at 1. (The fact that this choice is not restrictive is clear 

if we note that both E^iM \ Pl) and E^N \ PL) dopend on the distribution 

of differences between X^ and Xf and if we consider an appropriate stan 

dardization.) Tho Fortran routine RANF was used to generate the uniform 

[0,-1] random variables which were used in the Box-M?ller algorithm to 

generate the standard normal random variables. It was observed in all 

cases that, as a is increased, EEmc{N \ Pl) (ELfc(N \ Pl)) first decreases and 

after achieving a certain minimum value increases. Thus no multiple 

minima were observed. In most casos a*EylQ and a*LFC 
are not too different 

with a*EMC < alF0 in all cases. This latter fact helped in restricting the 

search. An explanation for this fact is that when the true fi 
= LFC, fewer 

populations aro retained for sampling in the latter stages of Pl compared to 

when the true {jl 
= EMC. Thus ELfc(n I??? is mado smaller by taking fewer 
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TABLE 3. DESIGN CONSTANTS A* 

P* 
aBMC aLFO 

10 

25 

0.90 

0.99 

0.90 

0.99 

0.90 

0.99 

3 1.2 1.5 

5 1.2 1.4 

3 0.9 1.4 

5 1.0 1.2 

3 1.4 1.6 

5 1.1 1.3 

3 1.0 1.3 

5 1.0 1.3 

3 1.5 1.6 

5 1.3 1.3 

3 1.1 1.4 

5 1.1 1.3 

obsorvations on each population in tho earlier stages and more observations 

on oach population retained in tho latter stages which corresponds to choosing 

larger value for alFC than for a%M0, 

For each a*EMC and a*LFC, the estimates of E(M) and E(N) were obtained 

at three configurations : EM0, LFC and a configuration called the equal 

distance configuration 
or EDC which satisfies /?[f+1]? /ivt] 

= S* (1 < i < fc?1). 

In addition tho estimates of the achieved PCS at LFC were obtained. All 

those estimates along with their standard errors are given in Table 4 (for 

(aEMc) anc^ Table 5 (for a*LF0). A discussion of the simulation results is 

given in Section 5.2. 

5. Some performance comparisons 

5.1. Comparison of Pl^Pemc) and 1?l (aLFc) w^ *V ^s a measure of the 

performance of pL(?*L(aEMc) 
or 

^l^lfc^ Relative to that of Bechhofer's (1954) 

single-stage procedure p1 when both guarantee the same probability 

requirement (1.1) we define tho relative efficiency (RE) of Pt with respect 
to Pi as follows : 

MW : y?| t, a*, P>. ?, y) = 
^y^ 

... (5.1) 

where kn is tho total sample size required by 3?, to guarantee (1.1); 

n = [(ctr/?*)*] 
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where c solves the equation 

] **-Hx+c)d<!>[x) = P*\ ... (5.2) ? OB 

and y^O can be interpreted as tho relative cost of sampling one stage 
versus the cost of taking one observation. We are assuming here that y 

remains fixed regardless of tho number of populations sampled in each stage; 

perhaps a more realistic; measure would take into account the number of 

populations sampled in each stage. Note that RE-values less, than unity 

favor PL over Pv 

Based on the Monte Carlo estimates of E(M) and E(N) given in Tables 

4 and 5, the estimates of RE of Px relative to Pl^emc) an(l ^l?^lfc) at' 

EMC, LFC and EDC were computed for y 
= 0, 5 and 10. These RE-vaiues 

are given in Tabio 6 (for Px relative to PrfflEMc)) au^ Ta*?'e 7 (^ ^?\ relative 

to Pi {aLFc))- ^n these computations tho c-valucs which are the solutions 

to (5.2) were taken from Milton (1963). Now we discuss the performance 

of Pi(ct?MC) <Md ^l^lfc) 'oas^ ou tho rosuits in Tables 4 and 6 and 

Tables 5 and 7 respectively. 

First looking at the values of the achieved PCS at LFC in Tables 4 and 5 

we see that, as expected, both the Pi's overprotect in terms of the P*-require 
ment and the overprotection increases with L. Clearly at P* = 0-99 the 

overprotection is much less than that at P* -- 0-90. In either case the 

bound does not appear to be overly conservative at these P*-values. Note 

that in Table 5 when k = 25, P* - 0-90 and L = 5 the observed fact that 

the achieved PCS 
? 0-988 is less than P* -= 0-99 can be explained as being 

due to sampling error. 

Next we study Tables ? and 7 which provide summaries of the results 

in Tables 4 and 5, respectively. In discussing the variations in RE with 

respect to a certain quantity, say P*, we assume that the remaining quantities, 
in this case k, L, y, ft, a* and S*/cr are kept fixed. Unless otherwise noted, 
the nature of variation in RE with rospoct to a given quantity is the same 

regardless of the values at which the other quantities are kept fixed. 

We note that RE decreases as k increases; i.e., savings due to using 

PL in place of Px increase with k. This indicates that tho effectiveness of 

PL as a screening procedure increases with k. We also note that RE decreases 

as the Ski increase and thus PL capitalizes on favorable configurations. 
An important observation is that at y = 0, RE < 1 at EMC (which is in some 
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table 4. monte carlo results for 
pl(<femq) 

P* L T VLFC(C$) 
EMC LFC EDC 

E(N) E(M) E(N) E(M) E(N) E(M) 

1000 .934 31.883 2.469 24.881 1.958 18.846 1.539 

(.008) (.276) (.021) (.245) (.021) (.158) (.020) 
0.90 

0.99 

0.90 

10 

0.99 

1000 .943 33.021 3.964 24.061 3.072 15.373 2.316 

(.007) (.324) (.031) (.282) (.033) (.180) (.032) 

1000 .991 67.097 2.515 45.941 1.572 39.249 1.253 

(.003) (.430) (.020) (.345) (.018) (.186) (.014) 

1000 .994 67.172 4.033 41.497 2.409 29.251 1.861 

(,002) (.470) (.029) (.388) (.026) (.230) (.025) 

1000 .918 72.018 2.767 56.883 2.298 36.292 1.640 

(.009) (.516) (.014) (.500) (.019) (.209) (.021) 

500 .938 72.536 4.212 54.428 3.118 31.846 2.102 

(.011) (.721) (.037) (.697) (.045) (.270) (.041) 

1000 .994 142.24 2.753 100.74 1.852 79.179 1.327 

(.002) (.753) (.014) (.706) (.019) (.244) (.016) 

500 .994 138.92 4.332 91.193 2.640 57.541 1.876 

(.003) (1.14) (.035) (1.06) (.037) (.360) (.035) 

1000 .930 195.35 2.924 159.30 2.511 92.765 1.690 

(.008) (1.17) (.008) (1.18) (.017) (.255) (.020) 

500 .932 186.89 4.652 144.33 3.792 60.970 2.454 

(.011) (1.81) (.026) (1.73) (.035) (.354) (.042) 

1000 .993 369.60 2.913 271.16 2.066 200.27 1.387 

(.003) (1.72) (.009) (1.75) (.016) (.291) (.017) 

500 .990 349.20 4.646 239.68 3.138 124.59 2.004 

(.004) (2.68) (.026) (2.51) (.033) (.411) (.035) 

The standard errors of the estimates arc given in round brackets. 

sense the "worst" configuration) for all the cases studied. Thus in terms 

of E(N), both Pl ^emc) and 1?l (aiFc) ?^ev savings over P1 regardless of jx. 

Next considering variation in RE with respect to y, we notice that RE 

increases with y as is to be expected. However, for y > 0, when k = 5, 

RE > 1 only at EMC and in few cases at LFC and when k = 10, RE > 1 

only in few cases at EMC. In all other cases (in particular at EDC when 

k = 5 or 10 and at all fji when k = 25) we notice that RE < 1. Thus even 

B3 4-11 

0.90 

25 

0.99 
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TABLE 5. MONTE CARLO RESULTS FOR JOL (ajjFc) 

P* L T PLFC(CS) 
EMC LFC EDC 

E(N) E(M) E(N) E(M) E(N) E(M) 

1000 .931 32.331 2.622 24.456 2.145 16.998 1.706 

(.008) (.304) (.019) (.278) (.020) (.184) (.021) 

0.90 

0.99 

0.90 

10 

0.99 

a. 90 

0.99 

5 1000 .943 33.302 4.232 23.782 3.405 14.326 2.677 

(.007) (.348) (.028) (.311) (.032) (.200) (.033) 

3 1000 .991 69.362 2.790 44.130 2.013 30.456 1.598 

(.003) (.500) (.014) (.445) (.018) (.266) (.018) 

5 1000 .993 68.014 4.352 40.464 2.914 25.306 2.261 

(.003) (.530) (.026) (.417) (.027) (.257) (.027) 

3 1000 .931 72.437 2.816 56.803 2.410 32.900 1.744 

(.009) (.553) (.013) (.541) (.019) (.233) (.021) 

5 500 .928 72.988 4.450 53.137 3.554 25.979 2.502 

(.012) (.806) (.033) (.761) (.042) (.316) (.046) 

3 1000 .993 144.33 2.867 97.604 2.112 64.160 1.538 

(.003) (.852) (.011) (.808) (.017) (.296) (.018) 

5 500 .994 141.65 4.658 88.112 3.400 40.747 2.462 

(.003) (1.29) (.026) (1.15) (.036) (.417) (.039) 

3 1000 .928 195.52 2.935 158.68 2.556 87.024 1.769 

(.008) (1.22) (.008) (1.21) (.017) (.263) (.020) 

5 500 .932 186.89 4.652 144.33 3.792 60.970 2.454 

(.011) (1.81) (.026) (1.73) (.035) (.354) (.042) 

3 1000 .991 373.21 2.954 267.54 2.304 157.68 1.609 

(.003) (1.94) (.007) (2.03) (.016) (.339) (.018) 

5 500 .988 353.35 4.828 236.81 3.638 99.882 2.420 

(.005) (2.89) (.019) (2.73) (.031) (.450) (.036) 

The standard errors of the estimates are given in round brackets. 
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TABLE 6. RELATIVE EFFICIENCY OF yjx WRT J0L (<*>*EMC) 

k P* L y RE^mc RE^c RE^C 

0 0.9435 0.7363 0.5577 

3 5 1.1401 0.8938 0.6842 

10 1.2918 1.0153 0.7818 

0.90 

0.99 

0.90 

10 

0 0.9772 0.7120 0.4549 

5 1.3622 1.0162 0.6948 

10 1.6592 1.2509 0.8799 

0 0.8735 0.5981 0.5109 

5 0.9738 0.6576 0.5563 

10 1.0626 0.7103 0.5964 

0 0.8745 0.5402 0.3808 

5 1.0675 0.6544 0.4713 

10 1.2383 0.7555 0.5513 

0 0.8094 0.6393 0.4079 

5 0.9135 0.7275 0.4734 

10 1.0072 0.8069 0.5324 

0 0.8152 0.6117 0.3579 

5 0.9959 0.7450 0.4507 

10 1.1584 0.8649 0.5341 

0 0.7892 0.5589 0.4393 

5 0.8422 0.5938 0.4632 

10 0.8924 0.6269 0.4859 

0 0.7707 0.5059 0.3192 

5 0.8669 0.5635 0.3613 

10 0.9579 0.6181 0.4011 

0 0.6795 0.5541 0.3227 

5 0.7179 0.5875 0.3460 

10 0.7549 0.6199 0.3686 

0 0.6501 0.5020 0.2121 

5 0.7185 0.5583 0.2504 

10 0.9410 0.6126 0.2874 

0 0.6969 0.5113 0.3776 

3 5 0.7176 0.5258 0.3871 

0.99 10 0.7380 0.5401 0.3963 

0 0.6585 0.4518 0.2349 

5 5 0.6957 0.4769 0.2515 

10 0.7323 0.5015 0.2677 

0.99 

0.90 
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TABLE 7. RELATIVE EFFICIENCY OF p1 WRT 
PL(a*LFC) 

k P* L y REemc RElfc RE^c 

3 0 0.9568 0.7237 0.5030 

5 1.1714 0.9069 0.6581 

0.90 

0.99 

0.90 

10 

25 

10 1.3370 1.0483 0.7777 

0 0.9855 0.7038 0.4239 

5 1.4039 1.0519 0.7143 

10 1.7268 1.3206 0.9384 

0 0.9030 0.5745 0.3965 

5 1.0183 0.6624 0.4699 

10 1.1203 0.7402 0.5349 

0 0.8854 0.5268 0.3294 

5 1.0973 0.6727 0.4475 

10 1.2847 0.8017 0.5519 

0 0.8141 0.6384 0.3698 

5 0.9206 0.7326 0.4429 

10 1.0164 0.8174 0.5086 

0 0.8203 0.5972 0.2920 

5 1.0134 0.7545 0.4095 

10 1.1870 0.8959 0.5152 

0 0.8007 0.5415 0.3560 

5 0.8565 0.5839 0.3879 

10 0.9093 0.6240 0.4181 

0 0.7859 0.4888 0.2261 

5 0.8904 0.5674 0.2864 

10 0.9894 0.6419 0.3436 

0 0.6801 0.5519 0.3027 

5 0.7186 0.5862 0.3278 

10 0.7559 0.6193 0.3520 

0 0.6501 0.5020 0.2121 

5 0.7185 0.5583 0.2504 

10 0.7846 0.6126 0.2874 

0 0.7037 0.5045 0.2973 

3 5 0.7248 0.5213 0.3096 

0.99 10 0.7454 0.5378 0.3216 

0 0.6663 0.4465 0.1883 

5 5 0.7052 0.4764 0.2092 

10 0.7433 0.5056 0.2296 

0.99 

0.90 
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TABLE 8. RELATIVE EFFICIENCY OF J0* WRT pL (a^DC) 

k P* L y REjjAfC' RE^fc? RE^jjc 

0 1.0811 0.9824 0.9240 

3 5 1.1319 1.0234 0.9656 
10 1.1627 1.0479 0.9990 

0 1.1197 0.9500 0.7537 

5 5 1.3523 1.1636 0.9806 

10 1.4932 1.2912 1.1145 

0 1.0175 0.9827 0.8220 

3 5 1.0595 0.9409 0.8548 
10 1.0924 0.9714 0.8814 

0 1.0186 0.8155 0.6127 

5 5 1.1614 0.9364 0.7245 
10 1.2731 1.0333 0.8155 

0 1.0166 0.9448 0.7790 

3 5 1.0664 0.9931 0.8379 
10 1.1056 1.0307 0.8839 

0 1.0239 0.9041 0.6836 

5 5 1.1627 1.0171 0.7977 
10 1.2716 1.1049 0.8869 

0.99 

0.90 

10 

0.99 

0.90 

25 

0.99 

0 0.9774 0.8927 0.7624 
5 1.0054 0.9192 0.7850 

10 1.0301 0.9429 0.8055 

0 0.9546 0.8081 0.5540 

5 1.0349 0.8724 0.6121 

10 1.1057 0.9296 0.6648 

0 0.9674 0.9132 0.6924 

5 0.9915 0.9365 0.7217 

10 1.0135 0.9577 0.7483 

0 0.9255 0.8273 0.4551 
5 0.9921 0.8898 0.5222 

10 1.0533 0.9464 0.5835 

0 0.9477 0.8760 0.7120 
5 0.9607 0.8875 0.7226 

10 0.9731 0.8986 0.7329 

0 0.8954 0.7740 0.4429 
5 0.9314 0.8049 0.4694 

10 0.9656 0.8344 0.4950 
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after accounting for the cost of sampling additional stages, PL (aFMC) and 

Pi(a?FC) dominate Px in large number of situations. The effect of increas 

ing y on RE is much less for large values of k. This is because the expected 
total sample sizes are large for large k and hence the cost of sampling stages 

is only a small fraction of the total sampling cost. 

Next considering variation in RE with respect to L, we notice that, for 

y = 0, RE decreases as L increases except in few cases at EMC when k = 5 

or 10. Thus increasing the number of stages L results in savings in E(N) 

at least for moderately large k and at /?-values away from EMC. Clearly 
for y > 0, RE increases with L in many instances because the cost of sampling 
additional stages is taken into account. 

It is also found that, in general RE decreases as P* increases although 

there are exceptions to this when k = 25. Finally we note that RE relative 

to Pi(aFMC) < RE relative to PL (a*LFC) for all the three values of y at EMC 

(for y 
= 0 by design) and for y 

== 5 and 10 at LFC. On the other hand, RE 

relative ^L(aipc) ^ -^ relative to PL (aFMC) at LFC for y 
= 0 (by design) 

and at all the three values of y at EDC (except in few cases when k = 
5). 

Thus, in general P? {a?FC) performs better than PL (aFMC) when the ?n are 

spread far apart; otherwise ^l^emc^ performs better. 

5.2. Comparison ofPi(a%MC) with minimax P2. In Tamhane and Bechhofer 

(1977) we proposed the minimax criterion (i.e. minimize 
rn^x^^Ey^N)) 

and showed that the maximum of Ey.(N\P2) 
over ii occurs at EMC. A 

table of design constants for minimax P2i say P\, computed using the sharper 
bound ?2.7) on the PCS are given in Tamhane and Bechhofer (1979). It 

would be of interest to compare PL (aFMC) with P\ and explore the extent of 

gains achieved by going from two to higher number of stages. In making this 

comparison it must be kept in mind that in determining the design constants 

of fii^EMc) 
we placed certain restrictions on them for computational ease. 

Furthermore, we used the less sharp bound (2.8) on the PCS of PL. Thus 

the comparison is biased in favor of P\. 

As a measure of the performance of ^l?Pl^emo) 
?r ^l^lfc)) Relative 

to that of P\ when both guarantee the same probability requirement (1.1) 
we define the relative efficiency (RE) of P* with respect to PL as follows : 

RF (X>* X> i* x* p* ? ^ yJB^M\pL)+E^{N\PL) 
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Again note that RE-values less than unity favor PL over P\. The quantities 

E^(M | P%) and 
E^(N \ P*2) 

were computed using the table of design constants 

for Pl given in Tamhane and Bechhofer (1979) and the exact formulae for 

these quantities given in Tamhane (1978). The Monte Carlo estimates of 

Ep(M\PL) and 
E^{N\PL) 

were obtained from Table 4. Based on these 

results the RE-values of P\ relative to PL (aEMC) were computed using (5.3) 
and they are given in Table 8. 

By examining Table 8 we notice that at EMC, RE > 1 in many cases 

unless k is large; thus for k ? 
10, RE < 1 when P* = 0-99 and y 

? 0 and 

for k = 25, RE < 1 in all cases except one. This is to be expected since P\ 
is based on a sharper lower bound on the PCS and no restrictions are imposed 
on its design constants; thus it is possible to achieve lower values of Eemc(N) 

using Pl. However if k is large than P*L (aEMC) (for L > 2) is able to achieve 

lower values of EEmc(N) in spite of the less sharp lower bound on the PCS 

used and the restrictions imposed on the design constants. 

What is perhaps most striking is that RE < 1 in most cases at LFC 

and in all the cases at EDC achieving values iess than 0-5 for k = 25 and 

? = 5 even when y > 0, i.e., even after the cost of additional stages is taken 

into account. Thus Pl?^emc) provides significant improvement over Pl 
in large number of situations. 
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